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Asymmetric catalysis1 has long relied on the design of chirally
rigid, particularly atropisomeric (atropos in Greek),2 ligands to
attain high enantioselectivity. However, even higher enantiose-
lectivity has recently been attained by chirally flexible (tropos)2

achiral benzophenone-derived diphosphine ligands, of which the
chirality is instantaneously controlled by a chiral activator
(A*-A) (Scheme 1a, M ) Ru, Rh, Pd, and Pt).3

Recently, binaphthol (BINOL)-derived phosphoramidite ligands
were developed for asymmetric conjugate additions.4 The
addition to nitroalkenes5 is one of the most synthetically
important methods to provide chiral amino (acid) derivatives6

but requires the matched combination of BINOL and amine
chiralities (Scheme 2, ligand B). We report here tropos
benzophenone-like phosphoramidite ligands (A) in which the
chirality can be instantaneously controlled7 by a chiral amine
built therein (Scheme 1b). Higher enantioselectivity and catalytic
activity can be attained in the Cu catalysis, by virtue of instant
chirality control in the ligands A; the ligands A fit well and
instantly with substrates and reagents (Scheme 2).

Complexation of phosphoramidite ligands A (A1: X ) H2, R
) 4-Me; A2: X ) H2, R ) H) and PdCl2(cod) was found to
give single PdCl2A2 enantiomers within minutes. Single PdCl2A2

enantiomers with C2-symmetry were instantaneously observed
in 1H NMR to show two singlets of four 4-Me groups in 2A
(see Supporting Information).

The advantage of the phosphoramidite ligand A can be seen
in the conjugate addition of diethylzinc to �-nitrostyrene (Table
1). Even at -78 °C within 3 h, the ligand A showed remarkably
high catalytic activity and enantioselectivity in the Cu catalysis
(>99%, 98% ee, entries 2 and 3).8

In order to differentiate from the biphenol (BIPOL) coun-
terpart C, the conformation of the Cu2+ precatalyst with the
ligand A2 was deduced with DFT calculation. Figure 1 shows
the most stable conformation localized in the Cu2+ precatalyst
with the phosphoramidite ligand A2. The side view of the A2

complex shows the more effective shielding of phenyl rings to
give higher enantioselectivity than the BIPOL or BINOL
counterparts (C, B) as observed in Table 1. The ethane-bridged
phosphoramidite A′ shows a similarly (or more) effective
shielding of phenyl rings.9

Conjugate additions to other nitroalkene substrates were also
examined with the ligand A1 to give constantly high enanti-
oselectivities (Table 2). The p-, m-, and o-methoxyphenyl,
p-methylphenyl, and furyl substrates were also shown to give
high enantiomeric excesses (up to 99% ee).10

By contrast, enantioselectivity obtained even by an excellent
atropos biphenyl phosphoramidite ligand D sharply decreased
from p- to o-methoxyphenyl substrates (99 to 68% ee, entries
5, 7, and 9). The high enantioselectivity with ligand A1 (97 to
91% ee, entries 4, 6, and 8) exemplifies the advantage of instant
chirality control to fit well with the substrate change.

With the success in dialkylzinc reagent, the conjugate addition
of trimethylaluminum reagent to nitroacrylate substrate was then
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Scheme 1. Instant Chirality Control in Ligands (A)

Scheme 2. Conjugate Additions to Nitroalkenes and Nitroacrylates

Figure 1. DFT calculations of Cu2+ precatalysts.

Published on Web 03/22/2008

10.1021/ja710340n CCC: $40.75  2008 American Chemical Society5012 9 J. AM. CHEM. SOC. 2008, 130, 5012–5013



examined11 to give synthetically useful �-amino acid derivative,
�2-alanine12 (Table 3). Phosphoramidite ligand A1 afforded high
yield and enantioselectivity (>99%, 93% ee). The product can
be easily transformed to �2-alanine ethyl ester by hydrogenation
with palladium on charcoal.11c

In summary, we have developed the ligands A to give higher
enantioselectivity and catalytic activity in the Cu-catalyzed
conjugate additions to nitroalkenes, by virtue of their instant
chirality control. The highly tropos phosphoramidite ligands A
outperform the analogous rigid (atropos) BINOL- and even
BIPOL-derived phosphoramidite ligands. These results represent
emblematic cases of catalyst self-adaptation and tuning.
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Table 1. Asymmetric Conjugate Additions of Et2Zn to �-Nitrostyrene

entry ligand temp (°C) conv. (%) ee (%)

1 A1 (R ) Me) -45 >99 94 (S)
2 A1 (R ) Me) -78 >99 98 (S)
3 A2 (R ) H) -78 >99 98 (S)
4a (R)/(S,S)-B -45 >99 59
5b (R)/(S,S)-B -30 >99 48 (R)
6c (R)/(S,S)-B -78 90 48 (S)
7a (S)/(S,S)-B -45d >99 32
8c (S)/(S,S)-B -78 80 39 (S)
9a C -45 >99 77
10b C -30 >99 8 (R)
11e D -65 >99 94 (R)

a See ref 5d. b See ref 5c. c See ref 5a. d Lower temperature (-78 °C)
led to a lower reaction rate. e Cu(OTf)2 (1 mol %), ligand (2 mol %),
reaction time (6 h) (ref 5g).

Table 2. Asymmetric Conjugate Additions of Et2Zn to Nitroalkenes

entry Ar ligand temp (°C) conv. (%) ee (%)

1 p-MePh A1 -78 >99 96
2a p-MePh (R)/(S,S)-B -30 >99 25
3b p-MePh D -65 >99 98
4 p-MeOPh A1 -78 >99 97
5b p-MeOPh D -65 >99 99
6 m-MeOPh A1 -78 >99 93
7b m-MeOPh D -65 >99 84
8 o-MeOPh A1 -78 99 91
9b o-MeOPh D -65 >99 67
10 p-CF3Ph A1 -78 >99 91
11b p-CF3Ph D -65 >99 77
12 furyl A1 -78 >99 99
13a furyl (R)/(S,S)-B -30 >99 8
14b furyl D -65 >99 92

a See ref 5b. b Cu(OTf)2 (1 mol %), ligand (2 mol %), reaction time
(6 h) (ref 5g).

Table 3. Conjugate Additions of Me3Al to Nitroacrylate

entry ligand temp (°C) yield (%) ee (%)

1 A1 -78 >99 93 (S)
2 (S)/(R,R)-B -78 74 93 (R)
3 (R)/(R,R)-B -78 72 60 (R)
a (S)/(R,R)-B -50 85 92 (R)

a See ref 11c.
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